

WHAT IS ANSIBLE® AND HOW CAN IT HELP ME?

Ansible® is an industry-leading automation tool that can centrally govern and monitor disparate systems
and workloads and transform and modernize enterprise IT services through the rapid deployment of
applications that can scale at pace with demand. Here at TRI-COR Industries (TCI), we are focused on
leveraging next-generation tools and technologies to deliver optimal operational outcomes for our
customers. The following describes why we have identified Ansible® as a best-of-breed solution when
performing Linux system administration tasks across multiple cloud environments.

Compelling Reasons to Use Ansible® in a DevOps Environment
 No software client needs to be installed: It is an agentless deployment for Linux. Ansible® uses Secure

Shell (SSH) on Linux Operating Systems (OS) and Windows Remote Management (WinRM) for Windows
OS connectivity.

 It is easy to use for someone with a systems administration or Bash scripting background.
 It can be used to automate across multiple cloud environments like Amazon Web Services (AWS)

and/or in custom data centers due to its portability and light footprint.

Using Ansible® Across Clouds
Below is an illustration of how Ansible® can be used seamlessly across clouds. If you can setup SSH
access to Linux, it is going to work for you in most cases. Note that Windows is slightly different with the
reliance on WinRM. WinRM uses a different port than SSH, but the same basic principles apply. This gives
DevOps teams the ability to truly manage systems across diverse cloud environments and data centers
with consistency and repeatability. The principles can be used to manage network gear across clouds or
data centers.

 www.tricorind.com 571-458-3824

http://www.tricorind.com/

Ansible® Playbooks
Below are examples of Ansible® playbooks. The playbooks illustrate the simplicity and power of Ansible®
for automating an installation, copying files, restarting a service, and error control. In the examples below,
we are going to install Apache to a Red Hat Enterprise Linux (RHEL), Ubuntu, and Amazon Machine
Image (AMI) of Linux. These are all different flavors of Linux with different software package managers,
different commands, and different usernames. Ansible® can do it with ease.

Refer to the Playbook 1 and Playbook 2 examples to see how the Linux operating system is called with
Ansible® and regular shell commands. Imagine whatever task you need to perform across hundreds of
servers. Next, consider how this type of activity was performed in the past without an automation tool. You
would have to complete this activity with Bash scripts with error controls, complex checks, SCP
commands, etc.

To begin, simply run the playbook on your Ansible® server with the command syntax below. This example
assumes that the user has a functioning Ansible® environment and that Ubuntu, RHEL, and AWS Linux
AMI have been correctly configured.

ansible-playbook
<playbook name.yml>
As identified in this screenshot
to the right, it will depict whether
the steps are executing
successfully or if changes have
occurred (the final summary
shows the number of changes).

Note that the dynamic IP of the
instances has been blacked out.
Also note that the different OS
have different names for the
Apache service that Ansible®
correctly used.

If using AWS, the Ansible® host file will include the proper AWS username by OS for SSH:

ec2-x-x-x-x.compute-1.amazonaws.com ansible_ssh_user=ubuntu
ec2-x-x-x-x.compute-1.amazonaws.com ansible_ssh_user=ec2-user

Playbook 1 is shown below. Refer to the sections with ‘when’ statements for the OS type. Playbook 1 is in
YAML Ain't Markup Language (YAML) format, so indents are critical to successful execution.

Playbook 1 = apacheinstall.yml

- hosts: lab
 vars:
 http_port: 80
 max_clients: 200

 sudo: yes
 sudo_user: root
 tasks:

 - name: ensure apache2-ubuntu is at the latest version
 apt: pkg=apache2 update_cache=yes state=latest
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'

 - name: ensure httpd-redhat is at the latest version
 yum: pkg=httpd state=latest
 when: ansible_distribution == 'Amazon' or ansible_distribution == 'RedHat'

make directories
 - command: sudo /bin/mkdir /var/www
 ignore_errors: yes

 - name: "Make sure index.html is present for the default virtual host"
 copy: src=files/index.html dest=/var/www/html/index.html

 - command: sudo /usr/sbin/useradd -M -r -U www-data
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'

 - name: "Make sure Ubuntu index.html is owned by apache user = www-data"
 file: path=/var/www/html/index.html owner=www-data group=www-data
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'

 - name: "Make sure RedHat index.html is owned by apache user = apache"
 file: path=/var/www/html/index.html owner=apache group=apache
 when: ansible_distribution == 'Amazon' or ansible_distribution == 'RedHat'

 notify:
 - restart apache2
 - restart httpd
 - restart httpdservice

 - name: ensure httpd is running (and enable it at boot)
 service: name=httpd enabled=yes
 when: ansible_distribution == 'Amazon' or ansible_distribution == 'RedHat'

 - name: ensure httpd.service is running
 service: name=httpd state=started
 when: ansible_distribution == 'Amazon' or ansible_distribution == 'RedHat'

 - name: ensure apache is running (and enable it at boot)
 service: name=apache2 state=started enabled=yes
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'

 handlers:
 - name: restart apache2
 service: name=apache2 state=started

 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'

 - name: restart httpd
 service: name=httpd state=started
 when: ansible_distribution == 'Amazon'

 - name: restart httpdservice
 service: name=httpd.service state=restarted
 when: ansible_distribution == 'RedHat'

Note that if you want to practice running Playbook 1 several times to see the process, you should have
another playbook to “reset” your servers to remove Apache installations. Playbook 2 is a remove step and
is shown below. This playbook is in YAML format as well, so indents are critical to successful execution.
Refer to the sections with ‘when’ statements for the OS type.

Playbook 2 = apacheremove.yml

- hosts: lab
 vars:
 http_port: 80
 max_clients: 200
 sudo: yes
remote_user: root
 tasks:

 - name: ensure apache is at the absent version
 apt: pkg=apache2 update_cache=yes state=absent purge=yes
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'

 - name: ensure apache is at the absent version
 yum: pkg=httpd state=absent
 when: ansible_distribution == 'Amazon' or ansible_distribution == 'RedHat'

remove the file directories
 - command: /bin/rm -rf /var/www
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu' or ansible_distribution
== 'Amazon'
 ignore_errors: yes

 - command: /usr/bin/rm -rf /var/www
 when: ansible_distribution == 'Amazon' or ansible_distribution == 'RedHat'
 ignore_errors: yes

remove the users
 - command: /sbin/userdel apache
 when: ansible_distribution == 'Redhat'
 ignore_errors: yes

 - command: /sbin/groupdel apache
 when: ansible_distribution == 'Redhat'
 ignore_errors: yes

 - command: /usr/sbin/userdel apache
 when: ansible_distribution == 'Amazon'
 ignore_errors: yes

remove the groups
 - command: /usr/sbin/groupdel apache
 when: ansible_distribution == 'Amazon'
 ignore_errors: yes

 - command: /usr/sbin/userdel www-data
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'
 ignore_errors: yes

 - command: /usr/sbin/groupdel www-data
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'
 ignore_errors: yes

 handlers:
 - name: restart apache
 service: name=apache2 state=restarted
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'

 - name: restart httpd
 service: name=httpd state=restarted
 when: ansible_distribution == 'Amazon' or ansible_distribution == 'Redhat'

Summary
The examples above are very basic examples of Ansible® usage. Your playbooks will probably be longer,
possibly more complex, and more appropriate for your environment. Keep in mind that you can also run
ad-hoc commands without playbooks. Ansible® can be scheduled with Cron or Ansible Tower® to do your
bidding as needed.

Ansible® offers comprehensive user documentation and it is recommended that it is reviewed. You can
start your research into Ansible® here: https://www.ansible.com/get-started.

About the Author
Kevin Cox is a Solutions Architect for TCI. His role at TCI is to help clients leverage skills and technology
for the best delivery of IT services. He offers a wide-range of diverse experience and expertise for clients.
Kevin has worked in IT as a Sysadmin, DBA, Architect, and in various leadership roles.

https://www.ansible.com/get-started

